Besapa banyak yg Kelmar? Texamon di permukaan The second equation is used when standard temperature lapse rate equals zero: $$P = P_b \cdot \exp\left[rac{-g_0 \cdot M \cdot (h - h_b)}{R^* \cdot T_b} ight]$$ where: P_b = reference pressure (Pa) T_b = reference temperature (K) L_b = temperature lapse rate (K/m) in ISA h = height at which pressure is calculated (m) h_b = height of reference level b (meters; e.g., h_b = 11 000 m) R^* = universal gas constant: 8.3144598 J/(mol·K) g_0 = gravitational acceleration: 9.80665 m/s² M = molar mass of Earth's air: 0.0289644 kg/mol PV: NKI P= NRTV P(U) = N(V) RT densitas A Solar wind Z solar wind di sekipor mors $$\frac{1 \cos_2 \text{ evc en wqy} = 9_{12.10^{-13}} \frac{1}{\cos_2}}{9_{12.10^{-13}} \frac{1}{\sin_2^{-13}} \frac{1}{\cos_2^{-13}}} = \frac{3}{3} \cdot \frac{\cos_2^{-13}}{3} \frac{\cos_2$$